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Abstract—We propose the use of V–I matrices well known in mi-
crowave engineering to the analysis of photonic devices, especially
those based on multilayer dielectrics. As an application we present
a novel fast effective index method for the analysis of fiber Bragg
gratings based on the use of V–I transmission matrices. It combines
the exactitude of traditional effective index methods and the speed
of coupled-mode methods.

Index Terms—Fiber Bragg gratings (FBGs), microwave engi-
neering, photonic devices.

I. INTRODUCTION

M ICROWAVE photonics has been defined as a research
area dealing with the study of optoelectronic devices

and systems processing at microwave rates and with the use of
optoelectronic devices and systems for signal handling in mi-
crowave systems [1]. Indeed this definition is consequent with
the fact that the unique properties of photonic components in
terms of bandwidth and low losses can be advantageously ex-
ploited to process microwave signals. The interested reader can
find a great number of examples in the literature [1]. This benefi-
cial relationship between microwave and photonics engineering
can, however, be exploited in the reverse direction as well. Tech-
niques previously developed in microwave engineering can be
exploited to solve in an efficient way problems dealing with the
design of photonic devices. In this context, there is a rich tra-
dition in microwave engineering related with the development
of matrix methods to model circuits and devices [2]. One of
these methods is the well-known V–I, ABCD, image parameter
or transmission matrix, which is frequently used in the solution
of transmission line problems but is relatively unknown to the
photonics engineer.

The V–I matrix has the following advantage: since the matrix
represents the tangential electric and magnetic fields, transmis-
sion through a dielectric discontinuity is expressed by the unity
matrix. Therefore, if the V–I matrix is employed to model pho-
tonic devices and circuits, no impedance-matching matrices are
required for dielectric transitions. This is in contrast to the well-
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known transfer matrix approach, frequently employed in the
modeling of photonic components, where impedance-matching
matrices have to be defined for each dielectric discontinuity.

The purpose of this paper is twofold. First, it aims to present
the properties of the V–I matrix to the photonics engineering
community, outlining its potential for application to the anal-
ysis of optical components and devices. Secondly, it provides a
specific demonstration of these benefits by developing a novel
matrix method for the analysis of fiber Bragg gratings (FBGs)
with unique characteristics in terms of precision and computa-
tion time. This paper is organized as follows. Section II presents
and refreshes the concepts and basic cascading rules of both the
transfer matrix (TM) and the transmission matrix (V–I) and pro-
vides the relationship between both of them. It is also shown that
the V-I matrix for the transition between two dielectrics is the
unity matrix. The section is finished with the derivation of the
field reflection and transmission coefficients of a device from
the knowledge of its overall ABCD matrix.

Section III is devoted to the application of V–I matrices to
the analysis of photonic devices in general and FBGs in par-
ticular. These are photonic devices based on the periodic or
quasi-periodic change of the refractive index along the direc-
tion of propagation. We develop a novel and very fast method
for the analysis of FBGs based on the V–I formalism, which
has an equivalent accuracy to that provided by effective index
methods. In Section IV, we present the results obtained by ap-
plying the method presented in Section III and its comparison to
those based on the solution of coupled-mode equations (CMEs).
We show that the V–I formalism is applicable to the solution of
any kind of uniform, aperiodic, or sampled FBG and that its
computation time is independent of the grating refractive index
profile but rather is a function of the grating length and the
number of wavelength samples required to represent the spectral
variation of its transmission and reflection coefficients. Further-
more, results obtained by using the V–I formalism are compared
to those obtained by CME showing almost equivalent compu-
tation time while having higher exactitude. Section V presents
the summary, conclusions, and future areas of applications.

II. TRANSMISSION AND TRANSFER MATRICES

We briefly present the main features of transfer and trans-
mission matrices in the description of photonic components
showing their main properties and their relationship. We then
calculate the transmission matrices of some basic elements that
will be employed in Section III.
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Fig. 1. (a) Box representation of a given photonic device with the forwardE
and backward E propagating fields at the left and right reference planes for
the definition of the transfer matrix. (b) Characterization of complex devices
composed of the cascade of elementary components for which the individual
transfer matrices are known.

A. Basic Definitions and Relationships

In the analysis of photonic components and devices, it is cus-
tomary to employ the transfer matrix [2], [3]. This formalism can
be understood by observing the upper part of Fig. 1. There we
show a box representation of a given photonic device with the
forward and backward propagating fields at the left and
right reference planes ( and , respectively). The transfer
matrix of the device relates those fields in the following way:

(1)

There are two main reasons why transfer matrices are widely
employed in the analysis of photonic components. First, it
allows for the straightforward characterization of complex
devices composed of the cascade of elementary components
for which the individual transfer matrices are known, as shown
in the lower part of Fig. 1. In this case, considering (1), it is
straightforward to show that

(2)

Equation (2) is the cascade rule for transfer matrices, which
states that the overall transfer matrix of a cascade of ele-
ments is the product of the transfer matrices of each element
taken form the leftmost to the rightmost element.

The second reason is that the transfer functions for the re-
flected and transmitted fields in the device are directly obtained

Fig. 2. (a) Box representation of a given photonic device with the tangential
transverse electric V and magnetic I fields at the left and right reference planes
for the definition of the transmission matrix. (b) Characterization of complex
devices composed of the cascade of elementary components for which the
individual transmission matrices are known.

once the transfer matrix elements are known. For instance, and
referring to (1)

(3)

On the other hand, the transmission matrix is widely used in mi-
crowave engineering, especially in the solution of transmission
line problems, but it is practically unknown by the photonics
engineer. Nevertheless, it can be employed for the analysis of
photonic devices. The transmission matrix relates the transverse
tangential electric and magnetic fields perpendicular
to the propagation axis at the left and right part of the device.
Referring to the upper part of Fig. 2, the following fields are
defined:

(4)

where represents the impedance of medium . For plane
waves , where is the refractive
index of the medium. Then the transmission matrix for the
device is defined as follows:

(5)

Since both transfer and transmission matrices can be employed
to describe the device performance, it is useful to derive the
transformation relationships between them. Using (1), (4), and
(5). one finds

(6)
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(7)

A cascade rule for transmission matrices can also be derived,
which states that the overall transmission matrix of a cascade
of elements is the product of the transmission matrices of
each element taken form the leftmost to the rightmost element.
Referring to the lower part of Fig. 2

(8)

Once the overall transmission matrix of a device is known, its
field reflection and transmission transfer functions are given by
(3), (7)

(9)

B. Transmission Matrices of Some Simple Elements

Fig. 3 shows three basic elements for the construction of com-
plex photonic structures. The upper part shows an interface be-
tween two dielectrics with refractive indexes given by and

; the middle structure represents a dielectric with refractive
index and length ; and the lower structure is the cascade of
the prior two. We will assume normal incidence. To derive the
transmission matrices of the first two elements, we will use their
transfer matrices, which are well known and apply the transfor-
mations given by (6).

In the case of the transition between two dielectrics, its
transfer matrix is given by [3]

(10)

Fig. 3. Three basic elements for the construction of complex photonic
structures. (a) Interface between two dielectrics with refractive indexes given
by n and n , (b) dielectric with refractive index n and length L, and
(c) cascade of the prior two.

Using (6), we get

(11)

This important property states that the transmission matrix of a
dielectric transition is the unity matrix.

For the propagation through a lossless dielectric with refrac-
tive index and length , the transfer matrix is given by

(12)

Again, using (6), we directly get

(13)

The reader can now check by using (8), (11), and (13) that the
overall transmission matrix of the cascade structure (lower part
of Fig. 3) is exactly equal to that given by (13). This means
that whereas for characterizing this structure using transfer ma-
trices we need to multiply three individual transfer matrices,
only one matrix is needed if we employ the transmission ma-
trix formalism. This points out the possibility of saving matrix
operations when using the latter approach to characterize com-
plex photonic devices composed of dielectric transitions. We
will elaborate on this in the next section.

III. THE V-I METHOD FOR THE ANALYSIS OF PHOTONIC

COMPONENTS: APPLICATION TO FIBER BRAGG GRATINGS

We briefly discuss the applicability of the V–I method to the
analysis of photonic devices presenting some general consider-
ations. We then develop this method for the analysis of arbitrary
fiber and integrated Bragg Gratings.
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Fig. 4. (a) Fabry–Perot cavity composed of an intermediate dielectric n and length L surrounded by a dielectric with refractive index n . (b) Device composed
of a stack of n dielectrics.

A. General Considerations

Our previous discussion has pointed out the possibility of
saving matrix operations by employing the transmission matrix
approach (V–I method from now on) rather than the transfer
matrix approach. The V–I method is advantageous if we need
to analyze complex photonic devices built from the cascade of
dielectric layers. Many photonic devices fall under this cate-
gory, including dielectric etalons, Fabry–Perot etalons, multi-
layer thin-film filters, distributed Bragg filter lasers, and fiber
and integrated Bragg gratings. Fig. 4 shows two specific exam-
ples that we will employ to illustrate this advantage. The upper
part of Fig. 4 shows a Fabry–Perot cavity composed of an inter-
mediate dielectric layer with refractive index and length
surrounded by a dielectric with refractive index . Using the
results derived in Section II-B, its overall V–I matrix is

(14)

Since the V–I matrices of dielectric transitions are always the
unity matrix, we can eliminate them when we use the cascade
rule (8). Thus, in this case, matrix multiplication is not required,

since two of the three matrices are unity. On the other hand, if
we were to analyze this structure using the transfer matrix, then

(15)

That is, three matrix operations.
This advantage is greater as the number of dielectric layers

increases. For instance, in the lower part of Fig. 4, we show
a device composed of a stack of dielectrics. Proceeding in
the same way as for the Fabry–Perot device, we arrive at the
conclusion that using the V-I method requires one to calculate
a product of V–I propagation matrices such as those given
by (13). Using a transfer matrix approach requires 2 1 ma-
trix multiplications ( propagation matrices given by (12) and

1 transition matrices given by (10). The saving is thus given
by 1 matrix operations.
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B. The V-I Method for the Analysis of Fiber and Integrated
Bragg Gratings

1) Analysis of Fiber and Integrated Bragg Gratings: FBGs
and integrated Bragg gratings (IBGs) are probably one of the
photonic components with more potential applications in cur-
rent and future wavelength-division multiplexing optical com-
munications systems and networks, including, in particular, mi-
crowave photonics and radio-over-fiber systems. The interested
reader is referred to the literature [5]–[15] for detailed descrip-
tions of their operation principles and applications.

FBGs and IBGs are produced by applying a spatially varying
ultraviolet interference pattern on the core of a photosensitive
optical fiber or waveguide, respectively. This creates a -de-
pendent perturbation of the effective index of the fundamental
mode, which is given by [13]

(16)

In the above expression, is the effective index of the fun-
damental mode in the absence of grating and repre-
sents the index perturbation due to the written Bragg grating
[13]–[15]. This perturbation is composed of a slow varying av-
erage term . A fast varying sinusoidal term with a
fixed modulation period given by is the ampli-
tude of the sinusoidal perturbation, also known as the apodiza-
tion of the sinusoidal variation, which is also a slowly varying
function with . represents a slowly varying phase term,
also known as grating chirp, which is responsible for the local
change in the value of the modulation period. The index pertur-
bation described by (16) generates two coupled counterpropa-
gating fundamental modes within the FBG/IBG, which interact
between themselves within the perturbation region.

The analysis of a given grating design starts from the knowl-
edge of the perturbation profile as given by (16) and must yield
the transmission and reflection transfer functions. The reflec-
tion coefficient transfer function shows a bandpass character-
istic centered at the Bragg wavelength of the structure, which is
given by . The transmission transfer function on
the contrary shows a notch characteristic centered at the Bragg
wavelength.

A rich collection of literature [5]–[9] has been produced
during the last 25 years devoted to analyzing FBGs and IBGs.
Topics include coupled-mode equation (CME) formulations
[5], [6], transfer matrix (TM) approaches based on the CME
solution of uniform FBG segments [7], and multilayer recursive
techniques [8]. Of these, CME and TM methods are the most
widely employed since they offer the best tradeoff between
exactitude and computational cost. For IBGs, effective index
methods (EIMs) [9] based on the multiplication of impedance
matching and field propagation matrices that characterize
regions comparable to the grating period have been proposed.
These methods are exact, but computationally expensive for
long corrugation lengths, such as those pertaining to FBGs.
We introduce a novel EIM method (V–I method, or VIM) that
retains the exactitude but at the same time is computationally

Fig. 5. Oversampling and discretization process of the refractive index
profile for an FBG in two steps illustrated for a local period within a linearly
chirped uniform FBG (left part and upper and middle traces in the right part).
Approximation of the sinusoidal local variation by a periodic square function
to eliminate oversampling (right part lower trace).

comparable to CME. This is achieved in two steps. First,
transmission V–I matrices [2] presented in Section II instead of
the typical transfer matrices are employed to characterize the
signal propagation through the multilayer structure, avoiding
the need to compute the impedance-matching matrices and
saving half of the required matrix multiplications. Secondly,
we show that oversampling (i.e., taking multiple samples of
the refractive index variation per period), usually employed
to approximate the sinusoidal variation by multiple squared
stacks, is not necessary and can be avoided, leading to only two
required samples per period.

2) The V-I Method: We refer to the refractive index varia-
tion with in an FBG/IBG given by (16). Effective index ma-
trix methods used to solve the analysis problem proceed first
to sample spatially (discretely) the refractive index variation
using a spatial discrete sampling step given by . For instance,
Fig. 5 shows this sampling process in two steps illustrated for
a local period within a linearly chirped uniform FBG. In tra-
ditional effective index methods, is much smaller than the
local period of the FBG/IBG in order to accurately approximate
the sinusoidal variation of the refractive index by the discrete
sampling function (see intermediate trace in the right part of
Fig. 5). This results in the oversampling of the refractive index
profile. For typical applications, the value of the local grating
period is around 534 nm, and usually 10–16 samples are taken.
This implies that even for short gratings (around 1 cm long),
the number of required spatial samples is over 100 000. This
figure has to be multiplied by the number of wavelength sam-
ples (i.e., the spectral range for which we want to calculate the
reflection and transmission transfer functions), which is usually
in the range of 500 or higher. These limitations, coupled with
the fact that transfer matrices are employed to calculate the field
propagation, have prevented the widespread use of the effective
index method in the analysis of FBGs.

Our V–I method is based first on the elimination of oversam-
pling while keeping an exact approximation of the refractive
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Fig. 6. Approximation of the sinusoidal function f (z) by a periodic square function f (z).

index profile given by (16), and then by using V–I matrices to
compute the propagation though the resulting discrete approxi-
mation of the FBG refractive index profile.

To illustrate the elimination of oversampling, the reader is re-
ferred to the lower trace in the right part of Fig. 5. Here each
local sinusoidal period is approximated by a square function
with the same period. The amplitudes of the square function
in the positive and negative semiperiods are obtained by taking
only two samples; one corresponds to the maximum value (pos-
itive semiperiod) and the other corresponds to the minimum
value (negative semiperiod). Thus only two samples per period
are used in principle in this approximation. The reader could
now correctly argue that since this approximation is coarser, it
will necessarily yield worse results in terms of accuracy than
those obtained using oversampling. In fact, this is true unless a
final and fundamental step is taken. Since we are approximating
a sinusoidal function by a periodic square function as shown in
Fig. 6, we should compare the fundamental term of the Fourier
series of the periodic square function with the sinusoidal func-
tion that it approximates. Referring to the signals in Fig. 6

(17)

A correct approximation requires thus to multiply the amplitude
of the periodic square approximation by a factor of 4.

The exact location of the sampling points
along the grating length depends on the FBG/IBG

characteristics. For uniform period (i.e., unchirped) gratings
, then, assuming

(18)

For chirped gratings, the exact location depends on the
chirp profile. For instance, for linearly chirped FBG

Fig. 7. Ideal location of the spatial sampling points of an aperiodic FBG
(upper). Translation of the sampled FBG into a multiplayer dielectric structure
for the application of the V-I formalism.

, where is the chirp parameter and
is the grating length

(19)

This is illustrated in the upper part of Fig. 7.
The final step is to transform the discretized refractive ap-

proximation into a multilayer structure, as shown in the lower
part of Fig. 7. The refractive index of each layer is obtained
by multiplying the value of the refractive index sample by the
normalization constant 4. The length of layer is given by

. Once the multilayer structure is obtained,
the propagation matrices (13) of each layer have to be calcu-
lated and multiplied in the order given by (8). From the overall
FBG/IBG transmission matrix, we get the transfer functions
using (9), bearing in mind that .

IV. RESULTS AND DISCUSSION

The described method has been implemented on a
MATLAB C based platform that includes as well a CME
implementation based on a Runge–Kutta RK-23 method
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Fig. 8. Modulus and group delay for the reflectivity of a 1-cm-long uniform FBG with �L = 8, which corresponds to those obtained in [13, Fig. 7]. Both solutions
obtained by the application of the V-I formalism and the solution of CME are plotted. The right part shows the differences between the solutions obtained by using
both methods.

Fig. 9. Similar results as those reported in Fig. 8 for an FBG with uniform period and apodised using a Hanning window [15] with a value for the B parameter
[15] of 0.5.

with 10 precision for comparison. We have tested the V-I
formalism proposed in this paper in several ways. First, we
have verified that it can be applied to the solution of any kind of
FBG/IBG and tested the results with those published by other

authors in the literature. Different kinds of FBG profiles have
been taken into account including, uniform, apodized, linearly
chirped gratings, sinc-sampled gratings, squared sampled
gratings, phase-shifted gratings, etc. The results obtained have
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Fig. 10. Results obtained for an example of a linearly chirped Gaussian apodised FBG designed in [14] for dispersion compensator with parameters given by
�L = 2�; F = 20�;L = 1 cm and a Gaussian window parameter of G = 16 [15]. Both solutions obtained by the application of the V-I formalism and the
solution of CME are plotted. The right part shows the differences between the solutions obtained by using both methods.

been identical to those reported elsewhere. Furthermore, the
results are extremely similar to those obtained with the CME
method, and the computation time almost equivalent. This
shows the wide range of applicability of this method.

The left part of Fig. 8 shows the results obtained in mod-
ulus and group delay for the reflectivity of a 1-cm-long uniform
FBG with , which corresponds to those obtained in [13,
Fig. 7]. The coincidence is exact. Furthermore, both solutions
obtained by the application of the V–I formalism and the solu-
tion of CME are plotted. It is impossible to distinguish them by
pure visual inspection, so the right part shows the differences
between the solutions obtained by using both methods. The ex-
ecution time for a 500-sample wavelength vector was 6 s for
both the V–I method and the CME.

Fig. 9 shows similar results for an FBG with uniform period
and apodised using a Hanning window [15] with a value for the
B parameter [15] of 0.5. The rest of the FBG parameters are
similar to those used to compute the results of Fig. 8. Again, the
results obtained using the V–I formalism and the CME method
are visually undistinguishable. The right part of Fig. 9 shows
again the discrepancy in the results. The execution time for a
500–sample wavelength vector was 6 s for the V–I method and
9 s for the CME.

Fig. 10 shows the results for an example of a linearly chirped
Gaussian apodised FBG designed in [14] for dispersion com-
pensator with parameters given by

cm and a Gaussian window parameter of [14], [15].
Here we plot the results for the reflectivity and the group delay
obtained by the V–I method and the CME method in the left part
and the amplitude and phase difference between both methods
in the right part. Again, the coincidence is almost total. The ex-
ecution time for a 500-sample wavelength vector was 6 s for the
V–I method and 12 s for the CME.

The reader can check that in these three examples, the ex-
ecution time for the V–I method is the same in all the cases

Fig. 11. Results for the transmissivity of a uniform grating with a � phase
shift in its center. The grating length is 1 cm, and �L = 8. Solution obtained
by applying the V-I and CME methods are shown.

regardless of the grating profile. Indeed, in the three cases,
the grating length, which fixes the computation time for this
method, was identical. On the other hand, the CME computation
time is highly dependent on the grating refractive index profile,
leading to higher execution times for grating profiles with drastic
changes. Furthermore, in these cases, CME might not converge.
For instance, in Fig. 11, we plot the results for the transmissivity
of an uniform grating with a phase shift in its center. The
grating length is 1 cm, and . The CME precision had to be
reduced to 10 to achieve convergence with the RK-23 method.
The execution times for a 1000-sample wavelength vector were
12 s for the V–I method and 3 s for the CME. However, the
reader can appreciate that the CME solution diverges outside the
forbidden band, while the V–I method provides a stable solution.
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Obtaining a stable solution with the CME requires the use of an
integration method (for instance, RK-45) with higher precision
and higher computation time.

V. SUMMARY AND CONCLUSION

We have proposed the use of V–I matrices well known in
microwave engineering in the analysis of photonic devices,
especially those based on multilayer dielectrics. We have shown
that using V–I transmission matrices results in a considerable
reduction of matrix operations as compared to the case of using
transfer matrices. As an application, we have presented a novel
fast V–I matrix formalism for the analysis of FBG, which com-
bines the exactitude of traditional impedance-matching effective
index methods and the speed of coupled-mode methods. We
believe that this method can be extended advantageously as
well to other photonic devices, such as those implemented by
photonic crystals.
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